
AS

 T

At the be
rather, th
vision pro
approach
Frequent
and pickin

Over the
technique
that could
algorithm

1)

2)

3)

4)

5)

6)

SSIGNME

Reflection

The Right

eginning of th
e problems a

oblem.” We a
 we have a b
ly, the key to
ng the appro

past month w
es are listed i
d be solved w
 from the list

Scale Invar
Feature Tr
(SIFT)

Cascade o
Classifiers

 Edge Findi
Hough Tra

 CAMSHIFT
Histogram

 Adaptive B
Subtractio

 Frame Diff

ENT #3: A
Due F

Id

Algorithm

e quarter you
are ill-defined
re a long way
road variety

o solving a pa
priate techni

we have look
n the left col

with compute
t, and write o

riant
ransforms

f Boosted

ing and
nsform

T Color
Tracking

Background
n

ferencing

APPLYING
February

deation

m for the R

u heard the a
d.” In other w
y from total im
of technique
rticular prob
que to meet

ked at a wide
umn of the ta

er vision. For
ne or two sen

a) De
sh

b) Na
de

c) Du
us

d) Gi
ca
of

e) De
ov

f) De
air

G COMPU
26, 2008

Ex

Right Job

assertion that
ords, there is
mage underst

es, each of wh
lem is unders
your applicat

variety of co
able below. T
each problem
ntences justif

etect cuts (su
ow (for exam

avigate a robo
etecting the s

uring a tennis
ing a camera

ven the cove
ses, detect w
the camera

etect when ca
ver the course

etect the pres
rport X-ray sc

TER VISI
(in lectu

xercise

(6 Points)

t “computer v
s no single fo
tanding, so in

hich works we
standing the c
tion’s deman

omputer visio
The right colu
m description
fying your de

udden scene c
mple, the begi

ot along a str
idewalk edge

s match, follow
positioned a

er images of t
when one of t

ars pull into a
e of the day

sence of wea
canner

ON TECH
re)

 Bon

vision is not a
rmulation of

nstead of a ge
ell only for sp
constraints o
ds.

n algorithms.
umn contains
n, pick the mo
ecision.

changes) in a
inning of a co

raight sidewa
es and staying

w the positio
above the cou

ten different
he cases is h

and out of a p

apon-shaped

HNIQUES

nus Challen

actually that h
“the comput

eneralized
pecific tasks.
of the situatio

 Some of the
a list of prob

ost appropria

a movie or TV
ommercial)

lk by
g within them

on of the ball
urt

DVD movie
eld up in fron

parking spot

objects in an

nge

hard;
er

on

ese
blems
ate

V

m

nt

n

 Pro

The purpo
class brai
in the clas

Based up
available
fully-form
be interes

For each
explanato
informatio

• A
• W
• A

w
co

Here are

oject Brain

ose of this ex
nstorming se
ss and team u

on your inter
computer vis

med ideas, jus
sted in pursu

concept, writ
ory sketch. O
on:

A slightly more
Which tools yo
A sentence or
worry too muc
onstraints ge

some examp

nstorming

xercise is to d
ession will give
up with proje

rests, the pre
sion tools, de
t general, hig

uing, and each

te down a on
On the back o

e detailed su
ou think migh
r two on how
ch about this
t in the way o

ples of what y

(8 Points)

develop some
e you an opp

ect partners w

evious assignm
velop four di

gh-level conce
h idea should

ne-sentence d
of the card, w

mmary of the
ht be most ap
the compute
just yet – the

of interesting

your cards mig

e ideas for ou
portunity to s
who are inter

ments and co
istinct ideas f
epts. Each pr
 be different

description o
write down yo

e idea
ppropriate fo
er vision com
e brainstormi
g ideas!

ght look like:

ur in-class bra
hare project
ested in purs

ourse reading
for class proj
roject idea sh
t.

n 3”x5” index
our name and

r the project
ponent of the
ng phase is to

ainstorming s
ideas with th

suing similar i

gs, and your k
ects. These d

hould be one

x card, along
 the following

e project mig
oo early to le

session. The
he other stud
ideas.

knowledge of
do not have t
that you wou

with an
g additional

ght work. Do
et technology

in-
ents

the
o be
uld

n't
y

Bring you
your favo
assignmen

 Pro

In this exe
position. W
should do

a) F
ex
d
p
o
ty
q
vi

F

r idea cards t
rite ideas to
nt.

ogrammin

ercise we wil
We will use t
ownload the v

irst we will tr
xample progr
emo is design
rovided) or o
ur sample vid
ype camshi
uickly cycle t
ideo until it h

ind the line o

to class on T
the class. Yo

g in Open

l try out a few
the same vide
video ball.

ry color histog
ram camshi
ned to be run
on a video seq
deo, drag the
ftdemo.ex
through its fra
has been sele

of the code th

hursday, Feb
u will later ha

nCV (8 Point

w different O
eo of a swingi
avi from ht

gram tracking
iftdemo.c
n either on a
quence (if a v
 file ball.a
xe ball.av
ames. The pr
cted with the

hat reads

bruary 14th. Be
and in your in

ts)

OpenCV func
ing ball that w
ttp://cs377s.s

g using the C
in the OpenC
live camera i

video file is sp
avi onto the
vi at the com
rogram will no
e mouse.

e prepared to
ndex cards al

tions to attem
we used in As
stanford.edu/

CAMSHIFT alg
CV/sample
nput (if no co
pecified on th
icon for cam

mmand line. Y
ot actually try

o present a q
ong with the

mpt to track
ssignment #2
/assignments

gorithm. Load
s/c/ directo
ommand line
he command
mshiftdemo
You will see t
y tracking an

uick summary
rest of this

an object’s
. As before, y

s/.

d and compil
ory. This trac
arguments a
 line). To run
o.exe, or sim
he video load
object in the

y of

you

e the
king
re
it on

mply
d and

e

c = cvWaitKey(10);
and replace it with
c = cvWaitKey(0);
so that the video will pause on each frame, allowing us to step through the video more slowly.
Recompile and run the program, again loading ball.avi. Now you can use the return key on
your keyboard to step through the frames one by one. Click and drag the mouse across the
ball in the video window, and upon advancing the video to the next frame, you will see an
ellipse appear over the ball’s location. Selecting an image region like this sets the starting
position of the search window for the CAMSHIFT algorithm, and builds a color histogram of
the selected region to track (this histogram should appear in another window). Continue
stepping through the video, and follow the position of the ellipse as the tracking algorithm
attempts to rediscover the ball in subsequent frames.

Modify the code so that OpenCV automatically writes out every 100th frame of the video as a
JPG image. Include the five resulting output images in your assignment hand-in. How well does
CAMSHIFT follow the ball? What causes the algorithm to break down?

b) Next we will try adaptive background subtraction. Load and compile the example program
bgfg_segm.cpp from the OpenCV/samples/c/ directory. This program creates a
statistical model of the background that updates over time. Note that because the program
uses some functionality from OpenCV’s experimental CVAUX library, you will need to link it
against cvaux.lib for a successful build. Run the program using ball.avi as input. You
should see a marked improvement in tracking performance.

Modify the code to overlay the detected foreground regions on the original input frames using
the cvDrawContours function:

IplImage *fgcopy = cvCloneImage(tmp_frame);
cvDrawContours(fgcopy, bg_model->foreground_regions,
CV_RGB(0,255,0), CV_RGB(255,255,255),1,-1);
cvShowImage("FG", fgcopy);
cvReleaseImage(&fgcopy);

Also modify the code to save the fgcopy image as a JPG file every 100th frame of the video,
and include the five resulting output images in your assignment hand-in.

c) Finally, we will try tracking the ball using optical flow. Load and compile flow.cpp, the
optical flow example program from the in-class tutorial session. Change the code to load
ball.avi and take a look at the output.

If we want to track the ball, we will need to isolate the motion of the ball from any other
motion going on in the video (for example, motion of the camera, or motion of background
objects). In complex cases we might build a model of the background motion and then look for

motion that does not fit this model. In this case, however, things are much simpler, because the
camera is relatively stable and the only movements we need to discard are the small local
displacements of the background due to camera jitter and feature matching errors.

Because the optical flow algorithm is performing matches between every single pair of frames,
the ball does not actually move very much from frame to frame. Modify the code so that it
skips two frames in between each pair of optical flow frames, to find flow vectors with a larger
feature displacement. If necessary, modify the optical flow search window or the number of
pyramid levels to make sure that the ball’s motion is still discovered by the algorithm.

Now compare the magnitudes of the motion vectors produced by the ball and the motion
vectors produced by the background objects. Choose a minimum motion threshold, and
discard flow vectors that are shorter than this threshold. Finally, average the positions of the
remaining flow vectors to approximate the center of the ball. Use cvCircle to draw a green
circle at the detected ball location. Save some sample frames as JPG images and include them
with your assignment hand-in to demonstrate the performance of your flow-based tracker.

 Eyepatch Introduction (4 Points)

This exercise will introduce you to Eyepatch, an experimental tool for rapid example-based
prototyping of computer vision. Eyepatch lets you design, test, and refine computer vision algorithms
without writing any code. Because it is in the early stages of development, you will most likely discover
bugs. Please use the online bug-tracking tool to report any bugs you find:

http://code.google.com/p/eyepatch/issues/list

You can also use this tool to submit suggestions and feature requests.

a) Download and install the latest version of Eyepatch from http://eyepatch.stanford.edu/. As of
this writing, the most recent version is 0.70. The DivX codec is included in the Eyepatch
installation; to ensure that Eyepatch works correctly, you should install DivX if you do not have
it already.

b) Start Eyepatch. The Eyepatch window consists of four panes:
• When you load or record videos, they show up in the Video pane. You can drag the

slider beneath the video to move back and forth through the video.
• The pane to the right of the video stores Examples (both positive and negative) that

you have extracted from the video. Eyepatch will use these examples to build a model
of the types of things that you are looking for in the video.

• The region beneath the video pane is the Filter Preview pane. It shows you a
representation of the filter that you are currently training, and a demonstration of how
the filter is performing on the current video frame.

• The bottom right pane contains the Filter Control Panel. It lets you specify a filter type
and save, load, and rename filters.

c) We will start by loading a video into Eyepatch. Download the following video:
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/postits.avi

Select "File... Open Video" and browse to the folder where you downloaded the video. Open
the video and you will see it appear in the video pane. Drag the slider back and forth to
browse through the video and get a feel for its contents.

d) We will begin by training a color filter. This is one of the simplest types of filters. Go to a
frame containing the blue Post-It note, and left click and drag to draw a rectangle around the
note. When you release the mouse button, you will see this portion of the video frame added
to the Examples pane in the "Positive Examples" category.

In the Filter Control Panel select the filter type “Color.” Click “Learn from Examples” to
create a color model based on the example you provided. A representation of this model
appears as a hue histogram in the Filter Preview pane. You can check the “Show Guesses” box
in the filter control panel to see how this filter model performs on the current frame of video.
Step through the video with “Show Guesses” enabled to see how well the filter performs at
different places in the video.

Try adding a picture of the green Post-It note to the positive examples and retraining the filter
by clicking “Learn from Examples” again. Notice that the color profile changes in the filter
preview pane, and the filter now highlights different things.

You can adjust a filter’s threshold using the slider in the Filter Control Panel. This threshold
determines how selective the filter model is. The higher the threshold, the closer the match
required to make a positive identification. A lower threshold will miss fewer items, but it will
also result in more false positives. A higher threshold will make fewer incorrect guesses, but
may miss identifying some valid items.

You can delete an example you don’t like by dragging it outside of the example pane. Remove
the green Post-It note from the examples and retrain the filter to restore the blue-only model.
Now click “Save Filter” and you will see the filter added to the list of saved filters in the Filter
Control Panel. To load a filter from this list, double-click its name. You can also rename a filter
by highlighting it, clicking it a second time, and typing a new name.

e) The brightness filter works almost exactly the same way as the color filter, using intensity
instead of hue. To try it out, we'll use another video:
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/phone-light.avi

Start by discarding the examples we have collected so far, since we no longer need them.

Highlight the old examples and drag them outside the examples panel to put them in the trash
(If the trash starts filling up, you can empty it with the “Empty Trash” command in the File
menu).

Load the new video and switch the filter mode to “Brightness.” Select the bright light and you
will see the filter update with a brightness profile – in this case, mostly very bright pixels. Click
“Show Guesses” and look at some different frames in the video. The light should be selected
in most frames.

f) The Shape filter extracts edges and contours from objects and compares them against a model
set of edge shapes. This filter works best on objects with sharp, distinct edges that stand out
from the background. We'll try it out on this video:
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/shapes.avi

Open this video and select the “Shape” mode. Discard the examples we were using for the
Brightness filter. Go to a frame where pen appears, and select the whole pen as an example.
Go through the video and select a few of the other objects as well, such as the binder clip or
the fork. Click on “Learn from Examples” and you will see a picture in the Filter Preview pane
showing the strong exterior edges in the examples you chose. Click “Show Guesses” and
browse through the video to see how this filter performs. Notice that it can be confused by
background objects, and that rotating the objects at too much of an angle will change their
edge shapes and confuse the filter. Remember that you can adjust the sensitivity of the edge
matching using the threshold slider in the filter control panel.

g) You can see that matching shapes does not always work so well – it is not particularly robust to
changes in angle or scale, and it can be distracted by messy backgrounds. An algorithm called
SIFT (Scale Invariant Feature Transforms) solves many of these problems. It runs much slower
than the methods we have tried so far, so it may not be able to track objects at interactive
frame rates, but it is more robust to changes in the scene or the position of the object you are
tracking. Load the following video to try it out:
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/book.avi

Discard the current set of examples, and find a frame where the book cover is upright, large,
and in clear focus. Select the book cover, switch to “SIFT” filter mode, and click “Learn from
Examples.” You will see an image of the book cover in the filter preview pane with the SIFT
features marked with arrows. If you only see a few features marked, you should try to find a
better example of the book cover that contains more SIFT features.

SIFT assigns each feature a canonical orientation, so that if enough features are detected and
matched, we can tell where an object is and how it has been moved or rotated. Turn on “Show
Guesses” and try it out by browsing through the video. Notice that while SIFT take some time
to run on each frame, it manages to perform well despite the complex background, even when
the book is rotated, upside down, or partially occluded. You can adjust the filter threshold to

set how many SIFT features are required to constitute a match.

h) So far the methods we have looked at work well for recognizing specific objects, but
sometimes you might want to identify a general class of objects. SIFT may do a good job
detecting a certain car, but what if we want to recognize any car? For tasks like this we can
use the “Adaboost” mode, which trains a classifier using machine learning. This filter takes the
most work to train, since it requires a large collection of both positive and negative examples,
but it can use these examples to build a more general model of the object of interest that is
more flexible than the approaches we have looked at so far. We will try to train a filter that
recognizes the backs of cars. Download and open the following video clip:
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/cars1.avi

Scroll through the video and draw rectangles around the backs of cars. The training works
best if you draw a tight bounding box around just the object – including portions of the
background will confuse the machine learning algorithm. Continue scrolling through the video
and adding examples until you have at least ten car pictures.

Unlike the other filters, Adaboost also requires negative examples. Go through the video
again, and this time, right click and drag the mouse to select regions of the video that do not
contain the object you are looking for. These regions can be as large as you like, as long as
they do not contain any cars. Be careful not to include even part of a car, as this can confuse
the learning algorithm. Continue adding negative examples until you have at least ten negative
examples.

Now click “Learn from Examples” to begin the training. Training the model takes some time;
you can interrupt the training at any time, but the longer you allow it to continue, the better
the model that it will produce.

i) Once the model training has completed, click “Show Guesses” to run the filter you have
trained on the current frame. Browse through the video to see how your filter performs. You
will probably see some false positives (things identified as cars that are not really cars) and
some false negatives (cars that are missed by the filter). You can improve the quality of the
filter by telling the computer where it has made mistakes. If you see a car that was not
detected by the filter, left-click and select it to add it to the positive examples. If you see a
region of the image without a car that was marked as a car by the filter, right-click and select it
to add it to the set of negative examples. By marking these tricky cases, you will allow the
computer to learn from its mistakes. After marking some mistakes, click on “Learn from
Examples” again to retrain the filter model.

If you want to continue training and testing, you can download some more car videos:
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/cars2.avi
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/cars3.avi

http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/cars4.avi

j) Download this video of marbles rolling across a table:
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/marbles.avi

Try train a classifier that accurately captures the marble positions. Which detection methods
worked the best? Save the classifier that gives you the best performance.

k) Now download this video of a horse and trainer:
http://cs377s.stanford.edu/code/eyepatch-tutorial/videos/horse.avi

This video presents additional challenges. Try to train classifiers that can detect the position of
the horse using two different classification methods. Which methods did you choose, and why?
Did one perform better than the other? If so, why do you think that this is the case? Save the
classifier that gives you the best performance.

l) Saved classifiers are stored in Eyepatch’s application data directory, within your user directory.
In Windows XP, the classifier files can be found in the directory
C:\Documents and Settings\USERNAME\Application Data\Eyepatch.
In Windows Vista, the location is
C:\Users\USERNAME\AppData\Roaming\Eyepatch.

Each classifier consists of a separate folder, with various classifier parameters stored as files
within the folder. If you are unsure which classifier is which, you can look at the file name.dat
in the classifier folder, which stores the classifier name. Upload the classifiers you trained for
the marble and the horse videos to an online location, and include the URL in your assignment
hand-in.

 Vision Prototyping in Eyepatch (12 Points)

Have you ever wondered if your roommate is drinking all of the milk in the refrigerator? Perhaps you
have an idea for how to improve traffic signaling by detecting approaching cars? Now that you are
comfortable with training classifiers in Eyepatch, you should be able to implement a monitoring system
of this variety. Use Eyepatch, together with the development tool of your choice, to develop your own
surveillance/monitoring system.

a) Begin by deciding which external development tool you will use to interface with Eyepatch.
Eyepatch exports its data over a local network socket using a choice of two common
protocols: OSC over UDP (on port 7000), or XML over TCP (on port 8000). You can read the
data streaming from Eyepatch by creating a basic socket connection on the appropriate port.
We have produced sample frameworks for that demonstrate how to establish a connection
with Eyepatch using three common development tools: Flash, Processing, and Visual C#. You

can download these examples from the following locations:
http://www.stanford.edu/class/cs377s/code/eyepatch-tutorial/flash-examples/
http://www.stanford.edu/class/cs377s/code/eyepatch-tutorial/processing-examples/
http://www.stanford.edu/class/cs377s/code/eyepatch-tutorial/csharp-examples/

b) You can run Eyepatch on live video input by selecting “Run Recognizers” from the Mode menu.
Double-click a classifier in the list of trained classifiers to add it to the collection of active
classifiers. Double-click an output, such as XML over TCP, to add it to the collection of active
outputs. Finally, click “Run on Live Video” to begin streaming data using input from a webcam,
or “Run on Recorded Video” to run on a prerecorded test video. You can double-click on a
classifier that is currently in the active list to select which variables it will output; different
classifier types are capable of producing different types of data. All of the classifiers can send
the locations of detected regions, but some can produce additional data. For example,
Gesture classifiers can send the index of the detected gesture, and Motion classifiers can send
the average motion direction.

c) Develop a surveillance/monitoring system by sending data from Eyepatch to the development
environment you chose. Be creative! Your system should notify the user when an event of
interest is occurring in the video. You can notify the user using sound, visuals, email or some
other communicative/interpretive method. Here are a few sample project ideas:

• Create a drawing based on the location/trajectory of the moving objects in the video,
• Create a basic security system that sends alerts to the screen when the object in

question (car, face, motion, etc.) is detected.
• Keep track of how many cars drive by on the highway, and keep a count of the color of

the different cars. Create a visualization for this data.
• Create a Flash demo of a stoplight control system that changes a stoplight’s display

color (red, yellow, green) based on traffic patterns.
• Create an alarm for a pot on a stove. When the pot really starts to steam, send an

alert to the screen that it is about to boil.
• Keep track of the number and types of birds in a scene (e.g. ducks vs. geese).
• Create a counter to keep track of the number of times the refrigerator is opened

within a given period of time.
• Capture a movie of a series of dice rolls. Keep track of the distribution of numbers

that occur in the resulting rolls. Are your dice really fair?

d) Write a description of your surveillance system. Which development platform did you decide
to use? What is the goal of your system? What parts worked well, and what challenges did you
encounter during the implementation? Were there additional features that you would have like
to see in Eyepatch that would have made the task easier for you?

e) Record a video of your system at work. Put the video online and include a link to its location in
your assignment hand-in.

